



H2020-NMBP-HUBS-2019

## FlexFunction2Sustain

## Open Innovation Ecosystem for Sustainable Nano-functionalized Flexible Plastic and Paper Surfaces and Membranes

Starting date of the project: 01/04/2020 Duration: 48 months

## = Deliverable D2.6

# Executive summary and full list of collected facility specifications

| Dissemination level |                                                                                       |   |
|---------------------|---------------------------------------------------------------------------------------|---|
| PU                  | Public                                                                                | Х |
| PP                  | Restricted to other programme participants (including the Commission Services)        |   |
| RE                  | Restricted to a group specified by the consortium (including the Commission Services) |   |
| CO                  | Confidential, only for members of the consortium (including the Commission Services)  |   |



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862156

#### DISCLAIMER

Any dissemination of results reflects only the authors' view and the European Commission, or the European Health and Digital Executive Agency (HaDEA) is not responsible for any use that may be made of the information Deliverable D2.6 contains.

#### **Executive Summary**

Technical specification (available processes, substrate sizes, productivity data) for the FlexFunction2Sustain OITB service portfolio are compiled.

This Factsheet (to be available to the public via the Flexfunction2Sustain web page) summarizes all machine capabilities and possible performances to be used as marketing instrument to attract clients to the FlexFunction2Sustain OITB.

This concerns the Lab-to-Fab facilities fort nano-functionalisation plastic and paper surfaces and membranes, specifically the machines from the vacuum coating cluster as well as the atmospheric pressure coating cluster, the nano-structuring and the organic electronics part.

## **Table of Contents**

| 1.       | INTRODU | JCTION                                                                                        | 5               |
|----------|---------|-----------------------------------------------------------------------------------------------|-----------------|
| 2.       | CLUSTER | 1: VACUUM COATING OF PLASTIC AND PAPER SURFACES AND RELATED QUALITY                           | CONTROL 6       |
|          | 2.1.    | R2R SPUTTERING LABFLEX <sup>®</sup> 200 (FRAUNHOFER FEP)                                      | 6               |
|          | 2.2.    | VACUUM COATING MACHINE NOVOFLEX® 600 (FRAUNHOFER FEP)                                         | 7               |
|          | 2.3.    | LBNANO (FRAUNHOFER FEP)                                                                       |                 |
|          | 2.4.    | SHEET-TO-SHEET ATOMIC LAYER DEPOSITION (ALD) (FRAUNHOFER IAP)                                 | 9               |
|          | 2.5.    | ROLL-TO-ROLL ATOMIC LAYER DEPOSITION (ALD) (FRAUNHOFER-IVV)                                   |                 |
|          | 2.6.    | SHEET-TO-SHEET MAGNETRON SPUTTER SYSTEM (AUTH)                                                |                 |
|          |         | 2: ATMOSPHERIC PRESSURE PROCESSES FOR FILM EXTRUSION, COATINGS, LAMI<br>UALITY CONTROL        |                 |
| 111      | 3.1.    | AtmoFlex 1250 (Fraunhofer FEP)                                                                |                 |
|          | 3.2.    | R2R COATING AND LAMINATION MACHINE (FRAUNHOFER IVV)                                           |                 |
|          | 3.3.    | CLICK AND COAT® BASED PILOT LINES: CC08 AND LS29 (COATEMA)                                    |                 |
|          | 3.4.    | ULTRASONIC SPRAY COATING (INL)                                                                |                 |
|          | 3.5.    | NANOPARTICLE DEPOSITION SYSTEM (BLNANO)                                                       |                 |
| 4.       | CLUSTER | 3: FACILITIES FOR NANO-STRUCTURING OF SURFACES                                                | 17              |
|          | 4.1.    | R2R UV NANOIMPRINT PILOT LINE (JOANNEUM RESEARCH)                                             |                 |
|          | 4.2.    | LASER STRUCTURING FACILITY (AUTH)                                                             |                 |
|          | 4.3.    | NANO-IMPRINT-LITHOGRAPHY TEST FACILITIES (COATEMA)                                            |                 |
|          | 4.4.    | Roll-to-roll plasma etching (Fraunhofer FEP)                                                  |                 |
|          | 4.5.    | SURFACE STRUCTURING OF LACQUERED LAYERS (FRAUNHOFER FEP)                                      |                 |
| 5.<br>Al | CLUSTER | 4: FACILITIES FOR SMART FUNCTIONALITY (PRINTED ELECTRONICS) ON PAPER A QUALITY CONTROL (AUTH) | ND PLASTIC,<br> |
|          | 5.1.    | FLEXIBLE PRINTED ELECTRONICS LINE (AUTH)                                                      |                 |
|          | 5.2.    | OVPD MACHINE (AUTH)                                                                           |                 |
|          | 5.3.    | SHEET-2-SHEET PRINTED ELECTRONICS LINE (FRAUNHOFER IAP)                                       |                 |
| 6.       |         | SIONS                                                                                         |                 |
| 7.       | DEGREE  | OF PROGRESS                                                                                   |                 |
| 8.       | DISSEMI | NATION LEVEL                                                                                  |                 |

### 1. Introduction

This deliverable provides an overview of the facilities involved in the open innovation testbed. The deliverable provides all the necessary information in a way which is easily conceivable for external parties. The deliverable is structured in 4 sections corresponding to the four clusters used in WP2 Lab-to-Fab facilities for nano-functionalisation plastic and paper surfaces and membranes:

- 1. Vacuum coating equipment
- 2. Atmospheric pressure equipment
- 3. Nano-Structuring equipment
- 4. Printed electronics-related equipment

Altogether 17 facilities are listed. These facilities are operated by seven different partners:

- Fraunhofer FEP
- Fraunhofer IVV
- Fraunhofer IAP
- INL
- AUTH
- BLNano
- Coatema

The information for each of the facilities is provided in a similar form. A figure is included showing the machine itself, preferably by a picture and a scheme. A table is summarizing the main machine information. It conveys information about available technologies and the substrate type and size. The responsible party is included in the headline of each section. In any case, the deliverable is focused on a quick overview. Detailed information needs to be requested by the interested parties during the discussion of potential projects.

## 2. Cluster 1: Vacuum Coating of Plastic and Paper Surfaces and Related Quality Control

2.1. R2R sputtering Labflex® 200 (Fraunhofer FEP)

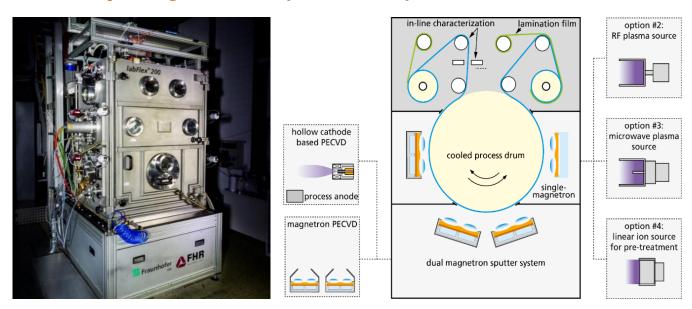



Figure 1: Picture and scheme of the labFlex<sup>®</sup> 200

#### Table 1: Machine parameters of the labFlex<sup>®</sup> 200

|                                 | *                                                         |  |
|---------------------------------|-----------------------------------------------------------|--|
| Machine name                    | labFlex <sup>®</sup> 200                                  |  |
| Machine type                    | Vacuum roll-to-roll coater                                |  |
| Substrate types to be processed | Polymer films, metal foils, textiles                      |  |
| Substrate dimension             | 300mm material width; continuous roll                     |  |
| Technologies available          | Sputtering, magPECVD, Plasma and ion treatment, arc PECVD |  |
|                                 | Nano patterning by plasma processes                       |  |
| Deposition materials available  | Metals and oxides                                         |  |
|                                 | Ag, Au, Ti, Al,                                           |  |
|                                 | ITO, ZnO:Al, TiO2, Al2O3 and others on request            |  |
| Typical project fields          | Optical coatings, permeation barrier                      |  |

## 2.2. Vacuum coating machine NovoFlex® 600 (Fraunhofer FEP)



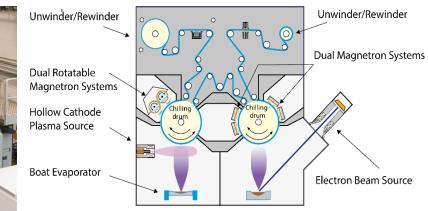



Figure 2: Picture and scheme of the novoFlex<sup>®</sup> 600

| Machine name                          | novoFlex <sup>®</sup> 600                                                                       |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Machine type                          | Vacuum roll-to-roll coater                                                                      |  |
| Substrate to be processed             | Polymer films, metal foils, textiles                                                            |  |
| Substrate dimension: Web width        | 650 mm                                                                                          |  |
| Substrate dimension: Deposition width | 600 mm                                                                                          |  |
| Technologies available                | Electron Bean evaporation, boat evaporation, sputtering,<br>Plasma and ion treatment, arc PECVD |  |
| Deposition materials available        | Metals and oxides                                                                               |  |
|                                       | Al <sub>2</sub> O <sub>3</sub> , SiO <sub>2</sub> , Al, Si and others on request                |  |
| Typical project fields                | Optical coatings, permeation barriers, coatings for batteries                                   |  |

#### Table 2: Machine parameters of the novoFlex® 600

## 2.3. LBnano (Fraunhofer FEP)

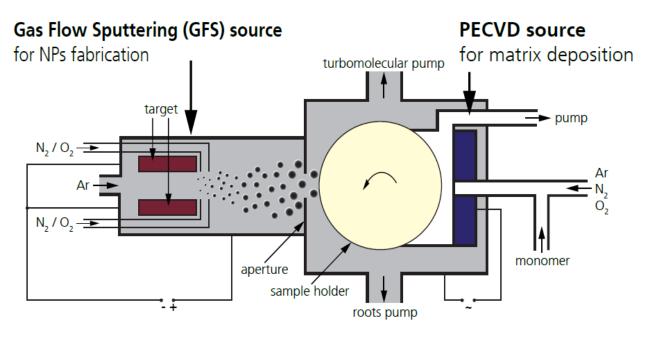



Figure 3: Scheme of the LBnano

#### Table 3: Machine parameters of the LB nano

| Machine name                    | LB nano                                                                 |  |  |
|---------------------------------|-------------------------------------------------------------------------|--|--|
| Machine type                    | System for gas aggregation sputtering+PECVD for nanoparticles in matrix |  |  |
| Substrate types to be processed | sheets                                                                  |  |  |
| Substrate dimension:            | A4 size                                                                 |  |  |
| Technologies available          | Gas flow sputter source (sputtering + nanoparticle aggregation PECVD    |  |  |
| Deposition materials available  | Ag- SiO <sub>x</sub>                                                    |  |  |
| Typical applications            | Sensors, PV systems, antibacterial layers                               |  |  |

## 2.4. Sheet-to-sheet atomic layer deposition (ALD) (Fraunhofer IAP)

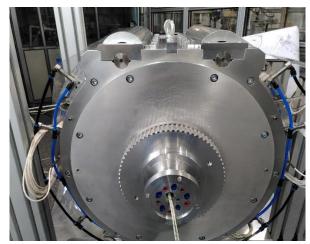



Figure 4: Picture and scheme of sheet-to-sheet ALD unit

| Machine name                    | Beneq TFS 200                                                                                                   |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Machine type                    | ALD deposition chamber connected inert glovebox system                                                          |
| Substrate types to be processed | Silicon wafers, glass substrates, plastic substrates                                                            |
| Substrate dimension:            | 150 x 150 mm                                                                                                    |
| Technologies available          | Atomic layer deposition (ALD)                                                                                   |
| Deposition materials available  | ALD precursors for the deposition of Al <sub>2</sub> O <sub>3</sub> , TiO <sub>2</sub> , ZrO <sub>2</sub> , Pd, |
| Typical project fields          | Organic electronic devices, barrier layer deposition                                                            |

#### Table 4: Machine parameters of the sheet-to-sheet ALD unit

#### 2.5. Roll-to-roll atomic layer deposition (ALD) (Fraunhofer-IVV)



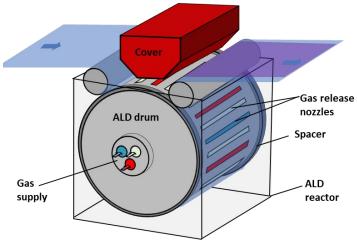


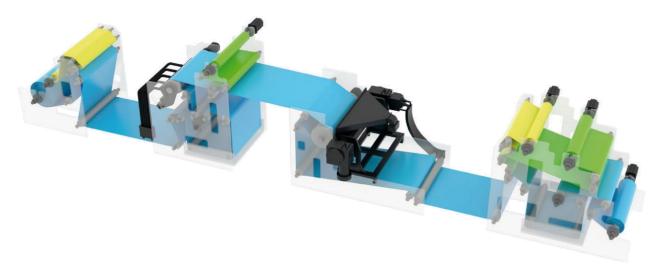

Figure 5: Picture and scheme of the roll-to-roll ALD system

| Machine name                    | Fraunhofer IVV – R2R ALD                    |
|---------------------------------|---------------------------------------------|
| Machine type                    | Roll-to-Roll Atomic Layer Deposition        |
| Substrate types to be processed | Polymer films, metal foils                  |
| Substrate dimension:            | Width: 335 - 370 mm                         |
|                                 | Core: 3 and 6 in                            |
|                                 | Roll diameter: up to 280 mm                 |
| Technologies available          | Atmospheric Spatial ALD                     |
| Deposition materials available  | Al <sub>2</sub> O <sub>3</sub>              |
| Typical applications            | Permeation barriers, coatings for batteries |

#### Table 5: Machine parameters of the roll-to-roll ALD system

#### 2.6. Sheet-to-sheet Magnetron sputter system (AUTH)




Figure 6: Picture and scheme of the sheet-to-sheet magnetron sputter system

| Machine name                    | High Vacuum Magnetron Sputtering Chamber                                                         |
|---------------------------------|--------------------------------------------------------------------------------------------------|
| Machine type                    | Sheet-to-Sheet coating machine                                                                   |
| Substrate types to be processed | Polymer films                                                                                    |
| Substrate dimension:            | A4                                                                                               |
| Technologies available          | Unbalanced Magnetron Sputtering                                                                  |
|                                 | High-power impulse magnetron sputtering                                                          |
| Deposition materials available  | Metals (Al, Ti, Cr), Carbon, TiB2, Boron Nitride                                                 |
| Typical applications            | Metallisation, Protective coatings, Antimicrobial Coatings<br>(Ti-based and Diamond-Like Carbon) |

| Table 6: Machine parameters of the sheet-to-sheet magne | etron sputter system |
|---------------------------------------------------------|----------------------|
|---------------------------------------------------------|----------------------|

## 3. Cluster 2: Atmospheric Pressure Processes for Film Extrusion, Coatings, Lamination and Related Quality Control

3.1. AtmoFlex 1250 (Fraunhofer FEP)



#### Figure 7: Scheme of the atmoFlex 1250

| Machine name                    | AtmoFlex 1250                                |
|---------------------------------|----------------------------------------------|
| Machine type                    | Roll-to-Roll coating                         |
| Substrate types to be processed | Polymer films                                |
| Substrate dimension:            | Maximum 1250m working width, continuous roll |
| Technologies available          | Electron beam Curing, Slot-die coating,      |
|                                 | R2R imprinting of structures from shim rolls |
| Deposition materials available  | Various lacquer materials                    |
| Typical applications            | Sustainable packaging                        |

#### Table 7: Machine parameters of the atmoFlex 1250

#### 3.2. R2R coating and lamination machine (Fraunhofer IVV)



Figure 8: (Left) Scheme of the roll-to-roll wet chemical coating and lamination pilot line at Fraunhofer IVV. (Right) Scheme of reverse gravure and slot-die coating technique

| Machine name                    | Fraunhofer IVV – R2R coating and lamination line                                                            |
|---------------------------------|-------------------------------------------------------------------------------------------------------------|
| Machine type                    | Roll-to-Roll coating and lamination                                                                         |
| Substrate types to be processed | Polymer films, paper, textiles                                                                              |
| Substrate dimension:            | Width: up to 480 mm,                                                                                        |
|                                 | Core: 3 and 6 in                                                                                            |
|                                 | Roll diameter: up to 400 mm                                                                                 |
| Technologies available          | Slot-die coating, Reverse gravure coating, Lamination unit, UV-<br>Curing, convection dryer, primer station |
|                                 |                                                                                                             |
| Deposition materials available  | Water and solvent based lacquers and adhesives                                                              |
| Typical application             | Flexible films for food packaging, films for technical applications,                                        |

#### Table 8: Machine parameters of the roll-to-roll coating and deposition machine

#### 3.3. Click and Coat® based pilot lines: CC08 and LS29 (COATEMA)



#### Figure 9: Pictures of the Click and Coat® based pilot lines

| Machine name                                                            | LS29, CC08                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machine type                                                            | Roll-to-Roll coating                                                                                                                                                                                                                       |
| Substrate types to be processed                                         | Various types (e.g., polymer films, cellulose based films, etc.)                                                                                                                                                                           |
| Substrate dimension:                                                    | Maximum 550 mm working width, continuous roll                                                                                                                                                                                              |
| Technologies available                                                  | Slot die coating, knife coating, screen printing, gravure printing, flexographic printing, 5 roller coating, corona treatment, Calendaring, Inertcalendaring, inert lamination, thermal NIL, floatation dryers, radiation dryers (UV, IR), |
| <b>Deposition materials available</b> Wide range of different materials |                                                                                                                                                                                                                                            |
| Typical applications                                                    | Sustainable packaging, Nanocellulose barrier coating, fuel cells,<br>membrane printing, printed electronics, pharmaceutical<br>products                                                                                                    |

#### Table 9: Machine parameters of the Click and Coat® based pilot lines

### 3.4. Ultrasonic Spray Coating (INL)

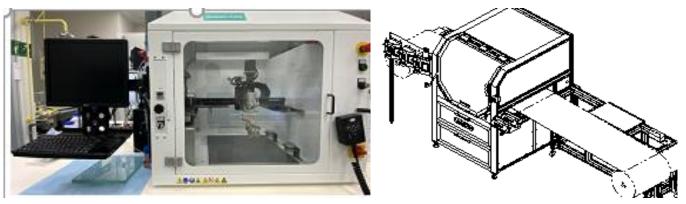



Figure 10: Picture and scheme of the ultrasonic spray coating machine

| Machine name                    | Sono-Tek ExactaCoat and customised R2R Sono-Tek Versicoat          |  |
|---------------------------------|--------------------------------------------------------------------|--|
| Machine type                    | ExactaCoat: Substrate-to-Substrate coating Versicoat: Roll-to-Roll |  |
|                                 | coating                                                            |  |
| Substrate types to be processed | ExactaCoat: Sheets/flat substrates                                 |  |
|                                 | Versicoat: films/paper rolls                                       |  |
| Substrate dimension:            | ExactaCoat: 30 x 30 cm                                             |  |
|                                 | Versicoat: rolls up to 60 cm width                                 |  |
| Technologies available          | Ultrasonic spray coating                                           |  |
| Deposition materials available  | Various, upon consultation, including biopolymer-based coatings    |  |
| Typical applications            | Sustainable coatings and surface functionalization solutions for   |  |
|                                 | food packaging, agriculture, green electronics, or medical devices |  |
|                                 | (e.g., bio-based food packaging with enhanced barrier or           |  |
|                                 | antimicrobial surfaces).                                           |  |

#### 3.5. Nanoparticle deposition system (BLNano)

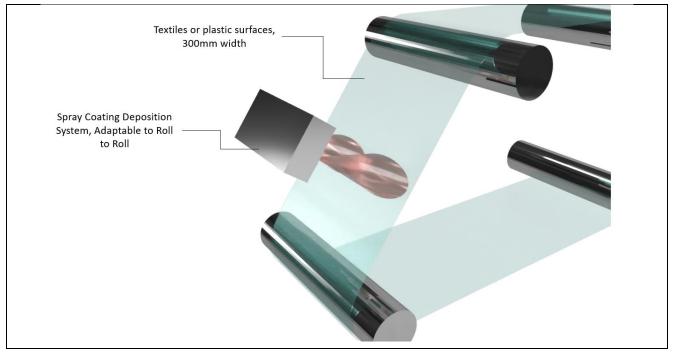



Figure 11: Picture and scheme of the nanoparticle deposition system

#### Table 11: Machine parameters of the nanoparticle deposition system

| Machine name                    | Nanoparticle deposition system                                 |  |
|---------------------------------|----------------------------------------------------------------|--|
| Machine type                    | Spray Coating Adaptable to Roll-to-Roll                        |  |
| Substrate types to be processed | Textiles, plastic substrates                                   |  |
| Substrate dimension:            | 300mm width of the roll                                        |  |
| Technologies available          | Spray Coating Technique, Nanoparticle Deposition               |  |
| Deposition materials available  | Polymeric Inorganic Nanoparticles, Antimicrobial Nanocomposite |  |
| Typical applications            | Antimicrobial Surface Coating                                  |  |

## 4. Cluster 3: Facilities for nano-structuring of surfaces 4.1. R2R UV Nanoimprint pilot line (JOANNEUM RESEARCH)

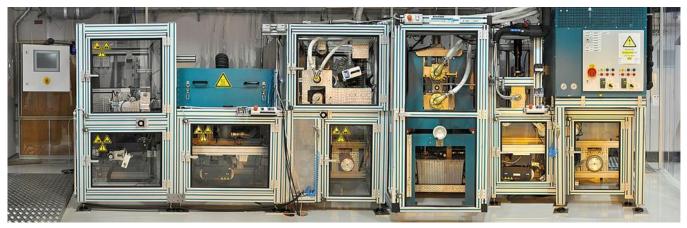



Figure 12 Roll-to-roll machine for UV nanoimprint lithography at JOA

| Machine name                    | Basecoater BC44                                                                                                                                                                                     |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Machine type                    | Roll-to-Roll coating and UV nanoimprint lithography                                                                                                                                                 |  |
| Substrate types to be processed | Polymer films (including recycled PET and cellulose based film)                                                                                                                                     |  |
| Substrate dimension:            | Width of the roll upto 300 mm, Thickness range 20 – 250 $\mu m$                                                                                                                                     |  |
| Technologies available          | R2R rotogravure coating and printing, UV Nanoimprint lithography web speed 0.5 to 30 m/min                                                                                                          |  |
| Deposition materials available  | UV curable resins (including biobased UV curable resins). NILcure®                                                                                                                                  |  |
| Typical project fields          | Optical films, Security features, Freeform micro-optics, Lighting,<br>Displays & Photovoltaics, 3D printing, Microfluidics, Point-of-Care<br>diagnostics, Lab-on-Foil, Biomimetic/bionic structures |  |

#### Table 12: Machine parameters of the UV nanoimprint lithography

The FlexFunction2Sustain service portfolio at JOANENUM RESEARCH is now updated as follow: nano- and micro (optical) structuring of PET, recycled PET, and cellulose based surfaces by the use of R2R UV-NIL machines with inline quality and process control.

#### 4.2. Laser Structuring Facility (AUTH)



Figure 13: Picture of the laser structuring facility

#### Table 13: Machine parameters of the Laser Structuring Facility

| Machine name                    | Laser Structuring Facility                                                                                                                                                                                                                   |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Machine type                    | Scanning R2R Ultra-Short Pulse Laser System                                                                                                                                                                                                  |  |
| Substrate types to be processed | Polymers, Metals, Paper                                                                                                                                                                                                                      |  |
| Substrate dimension:            | 300 mm wide rolls, Installed in R2R Pilot-Line, A4                                                                                                                                                                                           |  |
| Technologies available          | Picosecond Laser, First & Second Harmonic (1064 nm and 532 nm)                                                                                                                                                                               |  |
| Deposition materials available  |                                                                                                                                                                                                                                              |  |
| Typical applications            | Laser processing of printed polymers, Transparent Conductive<br>Oxides, Metals, Development of Noble Metal Colloidal Nanoparticles<br>based on Laser Ablation in Solvents<br>Laser scribing for application in Organic Photovoltaics & OLEDs |  |

### 4.3. Nano-Imprint-Lithography test facilities (Coatema)



Figure 14: Picture of the NIL test facility

#### Table 14: Machine parameters of the NIL test facility

| Machine name                    | Thermal nanoimprint module (Can be integrated into CC08 and LS29)  |  |
|---------------------------------|--------------------------------------------------------------------|--|
| Machine type                    | Roll-to-Roll lamination                                            |  |
| Substrate types to be processed | Various types (e.g., polymer films, cellulose based films, etc.)   |  |
| Substrate dimension:            | Maximum 550 mm working width, continuous roll                      |  |
| Technologies available          | Nitrogen protective atmosphere, inert lamination                   |  |
| Deposition materials available  | Wide range of materials                                            |  |
| Typical applications            | optical security films, degradable packaging, recyclable packaging |  |

#### 4.4. Roll-to-roll plasma etching (Fraunhofer FEP)

For details of the equipment please refer to section 1.

#### 4.5. Surface structuring of lacquered layers (Fraunhofer FEP)

For details of the equipment please refer to section 3.

# 5. Cluster 4: Facilities for Smart Functionality (Printed Electronics) on Paper and Plastic, and Inline Quality Control (AUTH)

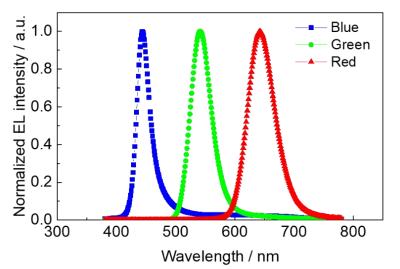
**5.1. Flexible printed electronics line (AUTH)** 



Figure 15 Picture of of Printed Electronics R2R pilot to production line at AUTh

| Machine name                    | Printed electronics line                                                                                                                                                                            |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Machine type                    | Roll-2-Roll printed electronics pilot Line                                                                                                                                                          |  |
| Substrate types to be processed | Polymer films                                                                                                                                                                                       |  |
| Substrate dimension:            | 300 mm coating width                                                                                                                                                                                |  |
| Technologies available          | inkjet printing; slot-die coating; flexo-printing, screen and gravure<br>printing, Laser structuring, UV-NIL, In-line metrology techniques<br>(Spectroscopic Ellipsometry, Raman, Eddy Current, OES |  |
| Deposition materials available  | Polymers                                                                                                                                                                                            |  |
| Typical applications            | Printed electronics (OPVs)                                                                                                                                                                          |  |

#### Table 15: Machine parameters of flexible printed electronics line


## 5.2. OVPD machine (AUTH)

#### Table 16: Machine parameters of OPVD machine

| Machine name                    | Organic Vapour Phase Deposition (OVPD)                                                                                                                                  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Machine type                    | OVPD Pilot-to-Production Line                                                                                                                                           |  |
| Substrate types to be processed | Glass, Polymer                                                                                                                                                          |  |
| Substrate dimension:            | 20x20 cm                                                                                                                                                                |  |
| Technologies available          | Deposition of Organic small molecules based on the gas phase<br>transport principle, In-line metrology tools (Spectroscopic<br>Ellipsometry and Raman Spectroscopy (RS) |  |
| Deposition materials available  | Organic small molecules                                                                                                                                                 |  |
| Typical applications            | Printed electronics (OPVs & OLEDs)                                                                                                                                      |  |



#### 5.3. Sheet-2-Sheet printed electronics line (Fraunhofer IAP)



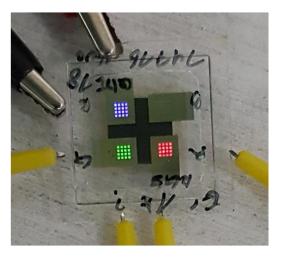



Figure 16 Picture of the clean room with the organic electronic pilot line in the back on the left hand side (upper picture) and results from the inkjet printed QD-LEDs processed in the organic electronic pilot line

| Machine name                    | Printed electronics pilot line                                                                                                                                                                                                                              |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Machine type                    | Sheet-2-Sheet                                                                                                                                                                                                                                               |  |
| Substrate types to be processed | Polymer films                                                                                                                                                                                                                                               |  |
| Substrate dimension:            | 150 x 150 mm                                                                                                                                                                                                                                                |  |
| Technologies available          | ALD encapsulation, Inkjet printing, slot die coating, vacuum evaporation, encapsulation of organic electronic (OE) devices                                                                                                                                  |  |
| Deposition materials available  | Different precursors for the deposition of barrier layers by ALD, charge carrier materials and active materials for solution processing of OE devices (OLEDs, OPV, perovskite solar cells), metals such as Ag, Al, Ca, Ba for thermal evaporated electrodes |  |
| Typical applications            | Printed electronics                                                                                                                                                                                                                                         |  |

| Table 17: Machine parameters of sheet-to-sheet line | Table 17: Ma | chine parame | eters of sheet | -to-sheet lin |
|-----------------------------------------------------|--------------|--------------|----------------|---------------|
|-----------------------------------------------------|--------------|--------------|----------------|---------------|

#### 6. Conclusions

The deliverable summarizes the most important technical information of all the machines which are available within the framework of FlexFunction2Sustain OITB.

Each machine is subject of a separate chapter. In each case, a picture is given together with a table of the most important information. This information will be available to the public via the Flexfunction2Sustain web page.

## 7. Degree of progress

Degree of fulfilment is 100%.

#### 8. Dissemination level

Public.